學術咨詢服務,正當時......期刊天空網是可靠的職稱工作業績成果學術咨詢服務平臺!!!

發現數學教學中的文化價值影響

發布時間:2015-09-09所屬分類:教育職稱論文瀏覽:1

摘 要: 在當前數學教學管理中的新應用發展模式有哪些?我們應該怎樣來認識數學中的文化價值,同時數學的管理應用對教學的影響有哪些,這樣去加強對數學的學習管理呢?本文做了以下闡述。 摘要:數學應用于實際問題的研究,其關鍵還在于能建立一個較好的數學模型。建立

  在當前數學教學管理中的新應用發展模式有哪些?我們應該怎樣來認識數學中的文化價值,同時數學的管理應用對教學的影響有哪些,這樣去加強對數學的學習管理呢?本文做了以下闡述。

  摘要:數學應用于實際問題的研究,其關鍵還在于能建立一個較好的數學模型。建立數學模型的過程,是一個科學抽象的過程,即善于把問題中的次要因素、次要關系、次要過程先撇在一邊,抽出主要因素、主要關系、主要過程,經過一個合理的簡化步驟,找出所要研究的問題與某種數學結構的對應關系,使這個實際問題轉化為數學問題。在一個較好的數學模型上展開數學的推導和計算,以形成對問題的認識、判斷和預測。這就是運用抽象思維去把握現實的力量所在。

  關鍵詞:數學研究,文化價值,教學管理

  一、數學:打開科學大門的鑰匙 科學史表明,一些劃時代的科學理論成就的出現,無一不借助于數學的力量。早在古代,希臘的畢達哥拉斯(Pythagoras)學派就把數看作萬物之本源。享有“近代自然科學之父”尊稱的伽利略(G. Galileo)認為,展現在我們眼前的宇宙像一本用數學語言寫成的大書,如不掌握數學的符號語言,就像在黑暗的迷宮里游蕩,什么也認識不清。物理學家倫琴(W.K.R @①ntgen)因發現了X射線而成為1910 年開始的諾貝爾物理獎的第一位獲得者。當有人問這位卓越的實驗物理學家科學家需要什么樣的修養時,他的回答是:第一是數學,第二是數學,第三還是數學。對計算機的發展做出過重大貢獻的馮·諾依曼(J.V.Neumman )認為“數學處于人類智能的中心領域”。他還指出:“數學方法滲透進支配著一切自然科學的理論分支,……它已愈來愈成為衡量成就的主要標志。” 科學家們如此重視教學,他們述說的這些切身經驗和堅定的信念,如果從哲學的層次來理解,其實就是說,任何事物都是量和質的統一體,都有自身的量的方面的規律,不掌握量的規律,就不可能對各種事物的質獲得明確清晰的認識。而數學正是一門研究“量”的科學,它不斷地在總結和積累各種量的規律性,因而必然會成為人們認識世界的有力工具。

  教學期刊推薦:《數學大世界》,《數學大世界》北方婦女兒童出版社主辦,北方婦女兒童期刊社編輯出版,全國基礎教育事業發展中心聯辦。雜志規格為大16開,64頁,封面四色、內文雙色印刷,每期定價8.00元。前期刊名為《小學生數學輔導》,《的主要讀者對象是中小學生、教師及家長!稊祵W大世界》以新課程標準為綱,緊密配合現行教材,普及基礎知識提高學習能力和解決實際問題能力的教輔期刊,期刊特點為提高學習興趣,訓練科學思維,拓展知識,提供實用高效學習方法。三個版本:小學低年級(1~2年級);小學中高年級(3~6年級);初中輔導版。

  馬克思曾明確指出:“一門科學只有當它達到了能夠成功地運用數學時,才算真正發展了。”這是對數學作用的深刻理解,也是對科學化趨勢的深刻預見。事實上,數學的應用越來越廣泛,連一些過去認為與數學無緣的學科,如考古學、語言學、心理學等現在也都成為數學能夠大顯身手的領域。數學方法也在深刻地影響著歷史學研究,能幫助歷史學家做出更可靠、更令人信服的結論。這些情況使人們認為,人類智力活動中未受到數學的影響而大為改觀的領域已寥寥無幾了。

  二、數學:科學的語言 有不少自然科學家、特別是理論物理學家都曾明確地強調了數學的語言功能。例如,著名物理學家玻爾(N.H.D.Bohr)就曾指出:“數學不應該被看成是以經驗的積累為基礎的一種特殊的知識分支,而應該被看成是普通語言的一種精確化,這種精確化給普通語言補充了適當的工具來表示一些關系,對這些關系來說普通字句是不精確的或過于糾纏的。嚴格說來,量子力學和量子電動力學的數學形式系統,只不過給推導關于觀測的預期結果提供了計算法則。”(注:《原子物理學和人類知識論文續編》,商務印書館1978年版。)狄拉克(P.A.M.Dirac )也曾寫道:“數學是特別適合于處理任何種類的抽象概念的工具,在這個領域內,它的力量是沒有限制的。正因為這個緣故,關于新物理學的書如果不是純粹描述實驗工作的,就必須基本上是數學性的。”(注:狄拉克《量子力學原理》,科學出版社1979年版。)另外,愛因斯坦(A.Einstein)則更通過與藝術語言的比較專門論述了數學的語言性質,他寫道:“人們總想以最適當的方式來畫出一幅簡化的和易領悟的世界圖像;于是他就試圖用他的這種世界體系來代替經驗的世界,并來征服它。這就是畫家、詩人、思辨哲學家和自然科學家所做的,他們都按照自己的方式去做。……理論物理學家的世界圖象在所有這些可能的圖象中占有什么地位呢?它在描述各種關系時要求盡可能達到最高標準的嚴格精確性,這樣的標準只有用數學語言才能做到。”(注:《愛因斯坦文集》第1卷,商務印書館1976年版。)

  一般地說,就像對客觀世界量的規律性的認識一樣,人們對于其他各種自然規律的認識也并非是一種直接的、簡單的反映,而是包括了一個在思想中“重新構造”相應研究對象的過程,以及由內在的思維構造向外部的“獨立存在”的轉化(在愛因斯坦看來,“構造性”和“思辨性”正是科學思想的本質的思想);就現代的理論研究而言,這種相對獨立的“研究對象”的構造則又往往是借助于數學語言得以完成的(數學與一般自然科學的認識活動的區別之一就在于:數學對象是一種“邏輯結構”,一般的“科學對象”則可以說是一種“數學建構”),顯然,這也就更為清楚地表明了數學的語言性質。

  數學作為一種科學語言,還表現在它能以其特有的語言(概念、公式、法則、定理、方程、模型、理論等)對科學真理進行精確和簡潔的表述。如著名物理學家、數學家麥克斯韋(J. C. Maxwell )的麥克斯韋方程組,預見了電磁波的存在,推斷出電磁波速度等于光速,并斷言光就是一種電磁波。這樣,麥克斯韋創立了系統的電磁理論,把光、電、磁統一起來,實現了物理學上重大的理論結合和飛躍。還有黎曼(Riemann )幾何和不變量理論為愛因斯坦發現相對論提供了絕妙的描述工具。而邊界值數學理論使本世紀二三十年代的遠距離原子示波器的制成變為現實。矩陣理論為本世紀20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理學革命奠定了基礎。

  隨著社會的數學化程度日益提高,數學語言已成為人類社會中交流和貯存信息的重要手段。如果說,從前在人們的社會生活中,在商業交往中,運用初等數學就夠了,而高等數學一般被認為是科學研究人員所使用的一種高深的科學語言,那么在今天的社會生活中,只懂得初等數學就會感到遠遠不夠用了。事實上,高等數學(如微積分、線性代數)的一些概念、語言正在越來越多地滲透到現代社會生活各個方面的各種信息系統中,而現代數學的一些新的概念(如算子、泛函、拓撲、張量、流形等)則開始大量涌現在科學技術文獻中,日漸發展成為現代的科學語言。

  三、數學:思維的工具 數學是任何人分析問題和解決問題的思想工具。這是因為:首先,數學具有運用抽象思維去把握實在的能力。數學概念是以極度抽象的形式出現的。在現代數學中,集合、結構等概念,作為數學的研究對象,它們本身確是一種思想的創造物。與此同時,數學的研究方法也是抽象的,這就是說數學命題的真理性不能建立在經驗之上,而必須依賴于演繹證明。數學家像是生活在一個抽象的數學王國中,然而他們在數學王國的種種發現,即數學結構內部和各種結構之間的規律性的東西,最終還是現實的摹寫。

  其次,數學賦予科學知識以邏輯的嚴密性和結論的可靠性,是使認識從感性階段發展到理性階段,并使理性認識進一步深化的重要手段。在數學中,每一個公式、定理都要嚴格地從邏輯上加以證明以后才能夠確立。數學的推理步驟嚴格地遵守形式邏輯法則,以保證從前提到結論的推導過程中,每一個步驟都在邏輯上準確無誤。所以運用數學方法從已知的關系推求未知的關系時,所得結論有邏輯上的確定性和可靠性。數學的邏輯嚴密性還表現在它的公理化方法上。以理性認識的初級水平發展到更高級的水平,表現在一個理論系統還需要發展到抽象程度更高的公理化系統,通過數學公理化方法,找出最基本的概念、命題,作為邏輯的出發點,運用演繹理論論證各種派生的命題。牛頓所建立的力學系統則可看成自然科學中成功應用公理化方法的典型例子。

  第三,數學也是辯證的輔助工具和表現方式。這是恩格斯(F.Engels)對數學的認識功能的一個重要論斷。在數學中充滿著辯證法,而且有自己特殊的表現方式,即用特殊的符號語言,簡明的數學公式,明確地表達出各種辯證的關系和轉化。如牛頓(I. Newton )—萊布尼茲(G. W. Leibniz )公式描述了微分和積分兩種運算之間的聯系和相互轉化,概率論和數理統計表現了事物的必然性與偶然性的內在關系等等(注:孫小禮《數學:人類文化的重要力量》,《北京大學學報》(哲學社會科學版),1993年第1期。)。 最后,值得指出的是,數學還是思維的體操。這種思維操練,確實能夠增強思維本領,提高科學抽象能力、邏輯推理能力和辯證思維能力。

  四、數學:一種思想方法 數學是研究量的科學。它研究客觀對象量的變化、關系等,并在提煉量的規律性的基礎上形成各種有關量的推導和演算的方法。數學的思想方法體現著它作為一般方法論的特征和性質,是物質世界質與量的統一、內容與形式的統一的最有效的表現方式。這些表現方式主要有:提供數量分析和計算工具;提供推理工具;建立數學模型。

  任何一種數學方法的具體運用,首先必須將研究對象數量化,進行數量分析、測量和計算。毛澤東同志曾指出:“對情況和問題一定要注意到它們

  的數量方面,要有基本的數量的分析。任何質量都表現為一定的數量,沒有數量也就沒有質量。”(注:《毛澤東選集》第4卷第1443頁,人民出版社1990年版。)例如太陽系第八大行星——海王星的發現,就是由亞當斯(J. C. Adams)和勒維烈(U. J. Leverrier)運用萬有引力定律,通過復雜的數量分析和計算,在尚未觀察到海王星的情況下推理并預見其存在的。

  數學作為推理工具的作用是巨大的。特別是對由于技術條件限制暫時難以觀測的感性經驗以外的客觀世界,推理更有其獨到的功效,例如正電子的預言,就是由英國理論物理學家狄拉克根據邏輯推理而得出的。后來由宇宙射線觀測實驗證實了這一論斷。

2023最新分區查詢入口

SCISSCIAHCI

7799精品视频